An Overview of Rubber Seed Oil-Based Biodiesel and Its Performance on Diesel Engine
DOI:
https://doi.org/10.71148/tjoc/v1i2.4Keywords:
Non-edible oil feedstocks, Fatty acid methyl esters (FAMEs), Transesterification kinetics, Alternative fuel combustion, Renewable energy sustainabilityAbstract
At the moment, fossil fuels that are not renewable are used to provide the world's energy needs. Researchers worldwide have been motivated to look for renewable energies to replace fossil fuels in the future by the issues of these fuels' future unavailability, the volatility of crude oil prices, and its detrimental environmental effects. Because it shares so many characteristics with fossil diesel, in addition to being good lubricant, biodegradable, non-toxic, and environmentally friendly when used in diesel engines, biodiesel has been highlighted as a good supplement and probable replacement of fossil diesel. According to studies, rubber seeds contain 35–45 weight percent oil, making them a stronger rival to other non-edible oil-bearing plants in the biodiesel synthesis process. As a result, the current study reviewed the most recent fuel qualities of rubber seed oil (RSO) biodiesel produced over the years as well as research investigations on how rubber seed oil biodiesel performed in diesel engines. Additionally highlighted were rubber seed oil extraction techniques, biodiesel production techniques, factors influencing the transesterification of RSO, and barriers to the transesterification of non-edible oils. The characteristics of rubber seed oil biodiesel (Fatty Acid Methyl Ester), including its viscosity, flash point, calorific value, and cetane number, have been shown in numerous studies to be comparable to those of conventional petroleum diesel, making its use in internal combustion engines (ICEs) without any modifications possible. According to research on performance studies of engines using rubber seed oil biodiesel and their mixtures with petrodiesel, all of the RSO biodiesel tested had engine performance characteristics that are comparable to those of conventional engines that burn petrodiesel as fuel
Downloads
References
[1] Ifijen, H.I., Nkwor, A.N. (2020). Selected under-exploited plant oils in nigeria: a correlative study of their physiochemical properties. Tanzania Journal of Science 46(3): 817-827. https://www.ajol.info/index.php/tjs/article/view/201129.
[2] Ifijen, I.H., Bakare, I.O., Obazee, E.O., Ize-Iyamu, O.C., Udokpoh, N.U., Ohifuemen, A.O., Mohammed, F.U., Fagbemi, E. A., Ayeke, P.O. (2023). Utilization of plant oil based-fatliquor in the processing of leather. The Minerals, Metals & Materials Society (eds) TMS 2023 Annual Meeting & Exhibition. The Minerals, Metals & Materials Series-Springer Nature. Cham. https://doi.org/10.1007/978-3-031-22524-6_38.
[3] Nkwor, A.N., Ukoha, P.O., Ifijen, H.I. (2021). Synthesis of sulfonated sesamum indicum L. seed oil and its application as a fatliquor in leather processing. Journal of Leather Science and Engineering 3(16): 1-13. DOI: https://doi.org/10.1186/s42825-021-00053-4.
[4] Ifijen, I.H., Ikhuoria, E.U., Omorogbe, S.O., Agbonlahor, O.G. (2018). Comparative studies on the use of palm kernel and coconut oil as biodiesel fuel sources. International Journal of Green Chemistry 4(1): 19-24.
[5] Kumar, Y., Das, L., Biswas, K.G. (2022). Biodiesel: Features, potential hurdles, and future direction. In: Joshi, J., Sen, R., Sharma, A., Salam, P.A. (eds) Status and Future Challenges for Non-conventional Energy Sources 2. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-4509-9_5.
[6] Brahma, S., Nath, B., Basumatary, B., Dasc, B., Saikia, P., Patire, K., Basumatary, S. (2022). Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances. 10: 10:100284. DOI: https://doi.org/10.1016/j.ceja.2022.100284.
[7] Atabani A.E., Silitonga, A.S., Ong, H.C., Mahlia, T.M. I., Masjuki, H.H., Badruddin, I.A., Fayaz, H. (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews. Elsevier 18(C): 211-24518: 211-245. DOI: 10.1016/j.rser.2012.10.013.
[8] Ramadhas, A.S., Jayaraj, S., Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel 84: 335–40. DOI: http://dx.doi.org/10.1016/j.fuel.2004.09.016.
[9] Ramos, M., Dias, A.P.S., Puna, J.F., Gomes, J., Bordado, J.C. (2019). Biodiesel production processes and sustainable raw materials. Energies 12: 4408. DOI: https://doi.org/10.3390/en12234408.
[10] Ifijen, I. H., Maliki, M., Odiachi, I. J., Aghedo, O.N., Ewanole, O.B. (2022). Solvents based alkyd resins and water-soluble alkyd resins: impacts of modification on their coating properties. Chemistry Africa 5: 211–225. DOI: https://doi.org/10.1007/s42250-022-00318-3.
[11] Ifijen I.H., Nyaknno U.U., Onaiwu G.E., Jonathan, E.M. (2022). Coating properties of alkyd resin, epoxy resins and polyurethane based nanocomposites: A review. Momona Ethiopian Journal of Science 14:1-31. DOI: http://dx.doi.org/10.4314/mejs.v14i1.1.
[12] Ogbiede, O.K., Omorotionmwan, E.A., Igenumah, O.D., I.H., Ifijen, Akhigbe, I.U. (2022). Comparative analysis on physicochemical properties and chemical composition of coconut and palm kernel oils. ChemSearch Journal 13(1): 70-75.
[13] Otabor, G.O., Ifijen, I.H., Mohammed, F.U., Aigbodion, A.I., Ikhuoria, E.U. (2019). Alkyd resin from rubber seed oil/linseed oil blend: a comparative study of the blend properties. Heliyon 5(5): e01621. DOI: https://doi.org/10.1016/j.heliyon.2019.e01621.
[14] Islam, A. K. M. A., Yaakob, S. R. P. P. Z. (2018). Non-edible vegetable oils as renewable resources for biodiesel production: South-East Asia Perspective. In M. Nageswara-Rao, & J. R. Soneji (Eds.), Advances in Biofuels and Bioenergy. https://doi.org/10.5772/intechopen.73304.
[15] Demirbas, A., Bafail, A., Ahmad, W., Sheikh, M. (2016). Biodiesel production from non-edible plant oils. Energy Exploration & Exploitation. 34(2): 290-318. DOI:10.1177/0144598716630166.
[16] Maliki, M., Ifijen, I.H. (2020) Extraction and characterization of rubber seed oil. International Journal of Scientific Engineering Science 4(6): 24-27.
[17] Nkwor, A.N., Ukoha, P.O., Ifijen, H.I., Ikhuoria, E.U. (2020). The use of sulfonated jatropha curcas oil for the processing of mechanically improved leather. Chemistry Africa 3: 911–925. DOI: https://doi.org/10.1007/s42250-020-00189-6.
[18] Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health 8:14. DOI: 10.3389/fpubh.2020.00014.
[19] Onaifo, J. O., Ikhuoria, E. U., Omorogbe, S. O., Agbonlahor, O. G., Ifijen, I. H. (2016). Coconut pit an alternative source of producing renewable material (bioethanol). Journal of Applied Chemical Science International 6(2): 80-84. https://www.ikprress.org/index.php/JACSI/article/view/3944.
[20] Onaifo, J.O., Ikhuoria, E.U., Ifijen, I.H., Abdullahi, S.M. (2022). Co-pyrolysis of soursop (Annona muricata) and mango (Mangifera indica) seeds: A Route to High-Quality Bio-oil. Chemistry Africa. https://doi.org/10.1007/s42250-022-00536-9.
[21] Olugbemide, A.D., Labunmi, L., Ifijen, I.H., Ogungbemide, D.I. (2020) Corn stover as substrate for bioenergy generation and precursor for biosilica production via anaerobic digestion. Tanzania Journal of Science 46(3): 807-816. https://www.ajol.info/index.php/tjs/article/view/201126.
[22] Sai Bharadwaj, A.V.S.L., Subramaniapillai, N., Mohamed, M.S.B.K., Narayanan, A. (2021). Effect of rubber seed oil biodiesel on engine performance and emission analysis. 296: 120708. DOI: https://doi.org/10.1016/j.fuel.2021.120708.
[23] Onoji, S.E., Iyuke, S.E., Igbafe, A.I. (2016). Hevea brasiliensis (Rubber Seed) oil: extraction, characterization, and kinetics of thermooxidative degradation using classical chemical methods. Energy Fuels 30(12):10555–10567. DOI: https://doi.org/10.1021/acs.energyfuels.6b02267.
[24] Ulfah, M., Mulyazmi, Burmawi, Praputri, E., Sundari, E., Firdaus. (2018). Biodiesel production methods of rubber seed oil: A review. IOP Conference Series: Materials Science and Engineering. 334: 012006. DOI:10.1088/1757-899x/334/1/012006.
[25] Nair, K.P. (2021). Rubber (Hevea brasiliensis). In: Tree Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-62140-7_8.
[26] Iyayi, A.F., Akpaka, P.O., Ukpeoyibo, U. (2008). Rubber seed processing for value-added latex production in Nigeria. African Journal of Agriculture Research 3(7): 505–9.
[27] Creencia, E., Nillama, J., Librando, I. (2018). Microwave-assisted extraction and physicochemical evaluation of oil from hevea brasiliensis seeds. Resources 7(2): 28–. DOI:10.3390/resources7020028.
[28] Kumar, S.S., Purushothaman, K. (2010). High FFA rubber seed oil as an alternative fuel for diesel engine – an overview. International Journal of Engineering Science 10(1):16–24.
[29] Ebewele, R.O., Iyayi, A.F., Hymore, F.K. (2010). Considerations of the extraction process and potential technical applications of Nigerian rubber seed oil. International Journal of Physical Sciences 5(6): 826–31.
[30] Li, J., Zu, Y.G., Luo, M., Gu, C.B., Zhao, C.J., Efferth, T., Fu, Y. (2013). Aqueous enzymatic process assisted by microwave extraction of oil from yellow horn (Xanthoceras borbifolia bunge) seed kernels and its quality evaluation. Food Chemistry 138: 2152–8. DOI: https://doi.org/10.1016/j.foodchem.2012.12.011.
[31] Ali, M., Watson, I.A. (2014). Comparison of oil extraction methods, energy analysis and biodiesel production from flax seeds. International Journal of Energy Research 38: 614–25. DOI: https://doi.org/10.1002/er.3066.
[32] Singh J, Bargale PC. (2000). Development of a small capacity double stage compression screw press for oil expression. Journal of Food Engineering 43(2): 75–82. DOI: http://dx.doi.org/ 10.1016/S0260-877(99)00134-x
[33] Mridula, D., Barnwal, P., Singh, K.K. (2013). Screw pressing performance of whole and dehulled flaxseed and some physico-chemical characteristics of flaxseed oil. Journal of Food Science and Technology 52(3):1 498-506. DOI: 10.1007/s13197-013-1132-6.
[34] Kumar, S.P.J., Prasad, S.R., Banerjee, R., Agarwal, D.K., Kulkarni, K.S., Ramesh, K.V. (2017). Green solvents and technologies for oil extraction from oilseeds. Chemistry Central Journal 11: 9. DOI: 10.1186/s13065-017-0238-8.
[35] Gimbun, J., Ali, S., Kanwal, C.C.S.C., Shah, L.A., Ghazali, N.H.M., Cheng, C.K., Nurdin, S. (2013). Biodiesel production from rubber seed oil using activated cement clinker as catalyst. Procedia Engineering 53: 13–9. DOI: https://doi.org/10.1016/j.proeng.2013.02.003.
[36] Koubaa, M., Barba, F.J., Mhemdi, H., Grimi, N., Koubaa, W., Vorobiev, E. (2015). Gas assisted mechanical expression (GAME) as a promising technology for oil and phenolic compound recovery from tiger nuts. Innovative Food Science & Emerging Technologies. 32: 172-180. DOI: 10.1016/j.ifset.2015.09.019.
[37] Jirarattanarangsri, W., Muangrat, R. (2022). Comparison of supercritical CO2 and screw press extraction methods for producing oil from Camellia sinensis var. assamica seeds: Physicochemical properties and antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants. 31: 100413.
[38] Kian, K., Scurto, A.M. (2018). Viscosity of compressed CO2-saturated n-alkanes: CO2/n-hexane, CO2/n-decane, and CO2/n-tetradecane. The Journal of Supercritical Fluids. 133: 411-420. DOI: https://doi.org/10.1016/j.supflu.2017.10.030.
[39] Teng, H., Chen, L., Huang, Q., Wang, J., Lin, Q., Liu, M., Lee, W.Y., Song, H. (2016). Ultrasonic-assisted extraction of raspberry seed oil and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. PLoS One. 11(4): e0153457. DOI: 10.1371/journal.pone.0153457.
[40] Junaid, P.M., Dar, A.H., Dash, K.K., Ghosh, T., Shams, R., Khan, S.A., Singh, A., Pandey, V.K., Nayik, G.A., Raj, G.V.S.B. (2022). Advances in seed oil extraction using ultrasound assisted technology: A comprehensive review. Journal of Food Process Engineering. DOI: https://doi.org/10.1111/jfpe.14192.
[41] Kumar, R.C., Benal, M.M., Prasad, D., Krupashankara, M.S., Kulkarni, R.S., Siddaligaswamy, N.H. (2018). Microwave assisted extraction of oil from pongamia pinnata seeds. 5(1): 2960-2964. DOI: https://doi.org/10.1016/j.matpr.2018.01.094.
[42] Moret, S., Conchione, C., Srbinovska, A., Lucci, P. (2019). Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods. 8(10):503. DOI: 10.3390/foods8100503.
[43] Chiavaro, E., Rodriguez-Estrada, M. T., Vittadini, E., Pellegrini, N. (2010). Microwave heating of different vegetable oils: relation between chemical and thermal parameters. LWT - Food Science and Technology 43: 1104-1112. DOI: https://doi.org/10.1016/j.lwt.2010.02.016.
[44] Azadmard-Damirchi, S., Habibi-Nodeh, F., Hesari, J., Nemati, M., Achachlouei, B. F. (2009). Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chemistry. 121: 1211-1215. DOI: https://doi.org/10.1016/j.foodchem.2010.02.006.
[45] Cardoso-Ugarte, G.A., Juárez-Becerra, G.P., Sosa-Morales, M.E., López-Malo, A. (2013). Microwave-assisted extraction of essential oils from herbs. Journal of Microwave Power and Electromagnetic Energy 47(1): 63-72. DOI: 10.1080/08327823.2013.11689846.
[46] Farhat A., Ginies C., Romdhane M., Chemat F. (2009). Eco-friendly and cleaner process for isolation of essential oil using microwave energy: Experimental and theoretical study. Journal of Chromatography A 1216(26): 5077-5085. DOI: 10.1016/j.chroma.2009.04.084.
[47] Delazar, A., Nahar, L., Hamedeyazdan, S., Sarker, S.D. (2012). Microwave-assisted extraction in natural products isolation. Methods in Molecular Biology 864: 89-115. DOI: 10.1007/978-1-61779-624-1_5. PMID: 22367895.
[48] Juhaimi, F.A., Uslu, N., Babiker, E.E., Ghafoor, K., Ahmed, I.A.M., Özcan, M.M. (2019). The Effect of Different Solvent Types and Extraction Methods on Oil Yields and Fatty Acid Composition of Safflower Seed. Journal of Oleo Science 68(11): 1099-1104. DOI: 10.5650/jos.ess19131.
[49] Fu, J., Summers, S., Morgan, T.J., Turn, S.Q., Kusch, W. (2021). Fuel Properties of Pongamia (Milletia pinnata) Seeds and Pods Grown in Hawaii. ACS Omega. 6(13): 9222-9233. DOI: 10.1021/acsomega.1c00635.
[50] Moghadas, H.C., Rezaei, K. (2017). Laboratory-scale optimization of roasting conditions followed by aqueous extraction of oil from wild almond. Journal of the American Oil Chemists' Society 94: 867–876. DOI: https://doi.org/10.1007/s11746-017-2995-x.
[51] Fu, S., Wu, W. (2019). Optimization of conditions for producing high-quality oil and de-oiled meal from almond seeds by water. Journal of Food Processing and Preservation 43: e14050. DOI: https://doi.org/10.1111/jfpp.14050.
[52] Akinoso, R.; Raji, A.O. Optimization of oil extraction from locust bean using response surface methodology. European Journal of Lipid Science Technology. 113: 245–252. DOI: https://doi.org/10.1002/ejlt.201000354.
[53] Jung, S., Mahfuz, A.A. (2009). Low temperature dry extrusion and high-pressure processing prior to enzyme-assisted aqueous extraction of full fat soybean flakes. Food Chemistry. 114: 947–954. DOI: https://doi.org/10.1016/j.foodchem.2008.10.044.
[54] Zhang, W.; Peng, H.; Sun, H.; Hua, X.; Zhao, W.; Yang, R. (2020). Effect of acidic moisture-conditioning as pretreatment for aqueous extraction of flaxseed oil with lower water consumption. Food and Bioproducts Processing 121: 20–28. DOI: https://doi.org/10.1016/j.fbp.2020.01.017.
[55] Evon, P.; Vandenbossche, V.; Pontalier, P.Y.; Rigal, L. Direct extraction of oil from sunflower seeds by twin-screw extruder according to an aqueous extraction process: Feasibility study and influence of operating conditions. Industrial Crops & Product 351–359. DOI: https://doi.org/10.1016/j.indcrop.2007.05.001.
[56] Liu, J.J., Gasmalla, M.A.A., Li, P., Yang, R. (2016). Enzyme-assisted extraction processing from oilseeds: Principle, processing and application. Innovative Food Science and Emerging Technologies 35: 184–193. DOI: https://doi.org/10.1016/j.ifset.2016.05.002.
[57] Valladares-Diestra, K., de Souza Vandenberghe, L.P., Soccol, C.R. (2020). Oil seed enzymatic pretreatment for efficient oil recovery in biodiesel production industry: A review. Bioenergy Research 13: 1016–1030. DOI: https://doi.org/10.1007/s12155-020-10132-9.
[58] Jegannathan, K.R., Nielsen, P.H. (2013). Environmental assessment of enzyme uses in industrial production—A literature review. Journal of Cleaner Production 42: 228–240. DOI: https://doi.org/10.1016/j.jclepro.2012.11.005.
[59] Cheng, M.H., Rosentrater, K.A., Sekhon, J., Wang, T., Jung, S., Johnson, L.A. (2019). Economic feasibility of soybean oil production by enzyme-assisted aqueous extraction processing. Food Bioprocess Technology 12: 539–550. DOI: https://link.springer.com/article/10.1007/s11947-018-2228-9.
[60] Yusoff, M., Gordon, M.H., Niranjan, K. (2015). Aqueous enzyme assisted oil extraction from oilseeds and emulsion de-emulsifying methods: A review. Trends in Food Science & Technology 41: 60–82. DOI: https://doi.org/10.1016/j.tifs.2014.09.003.
[61] Mwaurah, P.W., Kumar, S., Kumar, N., Kumar, A., Panghal, A.A., Kumar, V., Mukesh, S., Garg, K. (2019). Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Comprehensive Reviews in Food Science and Food Safety 19: 3–20. DOI: https://doi.org/10.1111/1541-4337.12507.
[62] Tabtabaei, S., Diosady, L.L. (2013). Aqueous and enzymatic extraction processes for the production of food-grade proteins and industrial oil from dehulled yellow mustard flour. Food Research International 52: 547–556. DOI: https://doi.org/10.1016/j.foodres.2013.03.005.
[63] Shramko, V.S., Polonskaya, Y.V., Kashtanova, E.V., Stakhneva, E.M., Ragino, Y.I. (2020). The Short overview on the relevance of fatty acids for human cardiovascular disorders. Biomolecules. 10(8): 1127. DOI: 10.3390/biom10081127.
[64] Liu, J., Zhang, R., Nie, K., Liu, C., Dend, L., Wang, F. (2022). Construction of fatty acid derivatives from rubber seed oil as α-glucosidase inhibitors based on rubber seed oil. Bioresources & Bioprocessing 9: 23. https://doi.org/10.1186/s40643-022-00492-9.
[65] Nde, D.B., Foncha, A.C. (2020). Optimization methods for the extraction of vegetable oils: A review. Processes 8: 209. https://doi.org/10.3390/pr8020209.
[66] Fang, Z. (2013). Pretreatment techniques for biofuels and biorefineries, pretreatment methods in biodiesel production processes. Green Energy and Technology (Chapter 18): 417–434. DOI:10.1007/978-3-642-32735-3_18.
[67] Zulqarnain, M.H.M.Y., Ayoub, M., Ramzan, N., Nazir, M.H., Zahid, I., Abbas, N., Elboughdiri, N., Mirza, C.R., Butt, T.A. (2021). Overview of Feedstocks for Sustainable Biodiesel Production and Implementation of the Biodiesel Program in Pakistan. ACS Omega 6 (29): 19099–19114. DOI: https://doi.org/10.1021/acsomega.1c02402.
[68] Baruah, J., Nath, B.K., Sharma, R., Kumar, S., Deka, R.C., Baruah, D.C., Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research 6:141. DOI: 10.3389/fenrg.2018.00141.
[69] Hájek, M., Vávra, A., de Paz Carmona, H., Kocík, J. (2021). The catalyzed transformation of vegetable oils or animal fats to biofuels and bio-lubricants: A review. Catalysts 11: 1118. DOI: https://doi.org/10.3390/catal11091118.
[70] Bôas, R.N.V., Mendes, M.F. (2022). A review of biodiesel production from non-edible raw materials using the transesterification process with a focus on influence of feedstock composition and free fatty acids. Journal of the Chilean Chemical Society 67(1): 5433-5444. DOI: http://dx.doi.org/10.4067/S0717-97072022000105433.
[71] Folayan, A.J., Anawe, P.A.L. (2019). Synthesis and characterization of Argania spinosa (Argan oil) biodiesel by sodium hydroxide catalyzed transesterification reaction as alternative for petrol-diesel in direct injection, compression ignition engines. Heliyon 5(9): e02427. DOI: 10.1016/j.heliyon.2019.e02427.
[72] Keera, S.T., El Sabagh, S.M., Taman, A.R. (2011). Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst. Fuel 90(1): 42-47. DOI: https://doi.org/10.1016/j.fuel.2010.07.046.
[73] Sajjad, N., Orfali, R., Perveen, S., Rehman, S., Sultan, A., Akhtar, T., Nazir, A., Muhammad, G., Mehmood, T., Ghaffar, S., Al-Taweel, A., Jilani, M.I., Iqbal, M. (2022). Biodiesel production from alkali-catalyzed transesterification of tamarindus indica seed oil and optimization of process conditions. Molecules 27: 3230. DOI: https://doi.org/10.3390/molecules27103230.
[74] Salaheldeen, M., Mariod, A.A., Aroua, M.K., Rahman, S.M.A., Soudagar, M.E.M., Fattah, I.M.R. (2021). Current state and perspectives on transesterification of triglycerides for biodiesel production. Catalysts 11: 1121. DOI: https://doi.org/10.3390/catal11091121.
[75] Faruque, M.O., Razzak, S.A., Hossain, M.M. (2020). Application of heterogeneous catalysts for biodiesel production from microalgal oil-A review. Catalysts 10: 1025. DOI: https://doi.org/10.3390/catal10091025.
[76] Chandra, P., Enespa, Singh, R., Arora, P.K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories 19: 169. DOI: https://doi.org/10.1186/s12934-020-01428-8.
[77] Musa, I.A. (2016). The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum 25(1): 21-31. DOI: http://dx.doi.org/10.1016/j.ejpe.2015.06.007.
[78] Schuchardta, U., Serchelia, R., Vargas, R.M. (1998). Transesterification of Vegetable Oils: A Review. Journal of the Brazilian Chemical Society 9(1): 199-210. DOI: https://doi.org/10.1590/S0103-50531998000300002.
[79] Demirbas, A. (2008). Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy conversion and management 49(1): 125-130. DOI: https://doi.org/10.1016/j.enconman.2007.05.002.
[80] Dagne, H., X Karthikeyan, R., Feleke, S. (2019). Waste to energy: Response surface methodology for optimization of biodiesel production from leather fleshing waste. Journal of Energy 2019: 7329269. DOI: https://doi.org/10.1155/2019/7329269.
[81] Eladeb. A., Aydi, A., Alenezi, I. (2021). Ethanolysis of waste cooking oils using KOH catalyst. Oriental Journal of Chemistry 37(6): 1344-1349. DOI: http://dx.doi.org/10.13005/ojc/370611.
[82] Maheshwari, P., Haider, M.B., Yusuf, M., Klemeš, J.J., Bokhari, A., Beg, M., Al-Othman, A., kUMAR, R., Jaiswal, A. (2022). A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts. Journal of Cleaner Production. 355: 131588. DOI: https://doi.org/10.1016/j.jclepro.2022.131588.
[83] Vijayakumar, C., Ramesh, M., Murugesan, A., Panneerselvam, N., Subramaniam, D., Bharathiraja, M. (2016). Biodiesel from plant seed oils as an alternate fuel for compression ignition engines—a review. Environmental Science and Pollution Research 23: 24711–24730. DOI: https://doi.org/10.1007/s11356-016-7754-2.
[84] Robinson, P.K. (2015). Enzymes: principles and biotechnological applications. Essays in Biochemistry 59: 1-41. DOI: 10.1042/bse0590001.
[85] Kotogán, A., Zambrano, C., Kecskeméti, A., Varga, M., Szekeres, A., Papp, T., Vágvölgyi, C., Takó, M. (2018). An Organic Solvent-Tolerant Lipase with Both Hydrolytic and Synthetic Activities from the Oleaginous Fungus Mortierella echinosphaera. International Journal of Molecular Sciences 19(4): 1129. DOI: 10.3390/ijms19041129.
[86] Sundaramahalingam, M.A., Amrutha, C., Sivashanmugam, P., Rajeshbanu, J. (2021). An encapsulated report on enzyme-assisted transesterification with an allusion to lipase. 3 Biotech 11(11): 481. DOI: 10.1007/s13205-021-03003-3.
[87] Pourzolfaghar, H., Abnisa, F., Daud, W.M.A.W., Aroua, M.K. (2016). A review of the enzymatic hydroesterification process for biodiesel production. Renewable and Sustainable Energy Reviews. 61: 245-257. DOI: https://doi.org/10.1016/j.rser.2016.03.048.
[88] Crawford, D.E. (2017). Solvent-free sonochemistry: Sonochemical organic synthesis in the absence of a liquid medium. Beilstein Journal of Organic Chemistry 13: 1850-1856. DOI: 10.3762/bjoc.13.179.
[89] Zhao, L., Ma, K., Yang, Z. (2015). Changes of water hydrogen bond network with different externalities. International Journal of Molecular Science 16(4): 8454-89. DOI: 10.3390/ijms16048454.
[90] Adewale, P., Dumont, M.J., Ngadi, M. (2015). Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews 45: 574–588. DOI: https://doi.org/10.1016/j.rser.2015.02.039.
[91] Nayak, S.N., Bhasin, C.P., Nayak, M.G. (2019). A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renewable Energy. 143: 1366-1387 DOI: 10.1016/j.renene.2019.05.056.
[92] Okechukwu, O.D., Joseph, E., Nonso, U.C., Kenechic, N. (2022). Improving heterogeneous catalysis for biodiesel production process. Cleaner Chemical Engineering 3: 100038. DOI: https://doi.org/10.1016/j.clce.2022.100038.
[93] Mootabadi, H., Salamatinia, B., Bhatia, S., Abdullah, A.Z. (2010). Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. 89(8): 1818-1825. DOI: https://doi.org/10.1016/j.fuel.2009.12.023.
[94] Yogesh, S, C., Singh, B., Korstad, J. (2011). Latest developments on application of heterogenous basic catalysts for an efficient and ecofriendly synthesis of biodiesel: a review. Fuel 90(4): 1309-1324. DOI: https://doi.org/10.1016/j.fuel.2010.10.015.
[95] Bernal, J.M., Lozano, P., García-Verdugo, E., Burguete, M.I., Sánchez-Gómez, G., López-López, G., Pucheault, M., Vaultier, M., Luis, S.V. (2012). Supercritical synthesis of biodiesel. Molecules. 17(7): 8696-719. DOI: 10.3390/molecules17078696.
[96] Ifijen, I.H., Odi, H.D., Maliki, M., Omorogbe, S.O., Aigbodion, A.I., Ikhuoria, E.U. (2020). correlative studies on the properties of rubber seed and soybean oil based-alkyd resins and their blends. Journal of Coating Technology and Research 18: 459–467. DOI: 10.1007/s11998-020-00416-2.
[97] Trirahayu, D.A., Abidin, A.Z., Putra, R.P., Hidayat, A.S., Safitri, E., Perdana, M.I. (2022). Process simulation and design considerations for biodiesel production from rubber seed oil. Fuels 3: 563–579. DOI: https://doi.org/10.3390/ fuels3040034.
[98] Mandari, V., Devarai, S.K. (2022). biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: A critical review. BioEnergy Research 15: 935–961. DOI: https://doi.org/10.1007/s12155-021-10333-w.
[99] Verma, P., Sharma, M.P. (20160. Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews 62: 1063–1071. DOI: https://doi.org/10.1016/j.rser.2016.04.054.
[100] Widayat, Wibowo, A.D.K., Hadiyanto (2013). Study on production process of biodiesel from rubber seed (hevea brasiliensis) by in situ (trans)esterification method with acid catalyst. Energy Procedia 32: 64–73. DOI: 10.1016/j.egypro.2013.05.009.
[101] Ahmad, J., Yusup, S., Bokhari, A., Ruzaimah, N.M.K. (20130. Study of fuel properties of rubber seed oil-based biodiesel. Energy Conversion and Management. 78: 266-275, DOI: 10.1016/j.enconman.2013.10.056.
[102] Mathew, G.M., Raina, D., Narisetty, V., Kumar, V., Saran, S., Pugazhendi, A., Sindhu, R., Pandey, A., Binod, P. (2021). Recent advances in biodiesel production: Challenges and solutions. Science of The Total Environment 794: 148751. DOI: https://doi.org/10.1016/j.scitotenv.2021.148751.
[103] Gimbun, J., Ali, S., Kanwal, C.C.S.C., Shah, L.A., Muhamad, N.H., Cheng, C.K., Nurdin, S. (2013). Biodiesel production from rubber seed oil using activated cement clinker as catalyst. Procedia Engineering 53: 13–19. DOI: https://doi.org/10.1016/j.proeng.2013.02.003.
[104] Zamberi, M.M., Ani, F.N. (20160. Biodiesel production from high FFA rubber seed oil using waste cockles. ARPN Journal of Engineering and Applied Sciences 11: 7782–7787.
[105] Aarathi, E. V. H., Atira Nalinashan, S. A., Prasad, R.K. (2019). Synthesis and characterization of rubber seed oil trans-esterified biodiesel using cement clinker catalysts. International Journal of Sustainable Energy 38(4): 333-347. DOI: 10.1080/14786451.2017.1414052.
[106] Shaah, A.H.M., Hossain, M.S., Allafi F.A.S., Alsaedi, A., Ismail, N., Ab Kadir, M.O., Ahmad, M.I. (2021). A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies. RSC Advances 11(40): 25018-25037. DOI: 10.1039/d1ra04311k.
[107] Thangaraj, A., Solomon, P.R., Muniyandi, B., Ranganathan, S., Lin, L. (2019). Catalysis in biodiesel production: A review. Clean Energy 3(1): 2–23. DOI: https://doi.org/10.1093/ce/zky020.
[108] Fukuda, H., Kondo, A., Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal Bioscience Bioenergy. 92(5): 405-416. DOI: https://doi.org/10.1016/S1389-1723(01)80288-7.
[109] Han, H., Cao, W., Zhang, J. (2005). Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as CO-solvent. Process Biochemistry. 40: 3148-3151. DOI: https://doi.org/10.1016/j.procbio.2005.03.014.
[110] Marchetti, J., Errazu, A. (2008). Technoeconomic study of supercritical biodiesel production plant. Energy Conversion Management 49: 2160-2164. DOI: https://doi.org/10.1016/j.enconman.2008.02.002.
[111] Karmee, S., Chadha, A. (2005). Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource Technology. 96: 405-416. DOI: https://doi.org/10.1016/j.biortech.2004.12.011.
[112] Ikechukwu, C. D., Ifijen, I. H., Udokpoh, N. U., Ikhuoria, E. U. (2021). Biodiesel Generation from Palm Kernel Biomass via an In-situ Transesterification Approach. Tanzania Journal of Science. 47(5): 1844-1855. DOI: https://dx.doi.org/10.4314/tjs.v47i5.29.
[113] Sugebo, B., Demrew, Z., Feleke, S., Biazen, M. (2021). Evaluation and characterization of rubber seed oil for biodiesel production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01900-4.
[114] Le, H.N.T., Imamura, K., Watanabe, N., Furuta, M., Takenaka, N., Boi, L.V., Maeda, Y. (2018). Biodiesel production from rubber seed oil by transesterification using a co-solvent of fatty acid methyl esters. Chemical Engineering & Technology. 41(5): 1013-1018. DOI:10.1002/ceat.201700575.
[115] Kawashima, A., Matsubara, K., Honda, K. (2008). Development of heterogeneous base catalysts for biodiesel production. Bioresource Technology 99: 3439-3443. DOI: https://doi.org/10.1016/j.biortech.2007.08.009.
[116] Kawashima, A., Matsubara, K., Honda, K., (2009). Acceleration of cata-lytic activity of calcium oxide for biodiesel production. Bioresource Technology 100: 696-700. DOI: https://doi.org/10.1016/j.biortech.2008.06.049.
[117] Ling, J.S.J., Tan, Y.H., Mubarak, N.M., Kansedo, J., Saptoro, A., Nolasco-Hipolito, C. (2019). A review of heterogeneous calcium oxide-based catalyst from waste for biodiesel synthesis. SN Applied Sciences 1: 810. DOI: https://doi.org/10.1007/s42452-019-0843-3.
[118] Liu, X., He, H., Wang, Y., Zhu, S., Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87: 216-221. DOI: https://doi.org/10.1016/j.fuel.2007.04.013.
[119] Omorogbe, S.O., Ikhuoria, E.U., Aigbodion, A.I., Obazee, E.O., Momodu, V.M. (2013). Production of rubber seed oil-based biodiesel using different catalysts. Current Research in Chemistry 5: 11-18. DOI: https://dx.doi.org/10.3923/crc.2013.11.18.
[120] Pulungan, A.N., Kembaren, A., Nurfajriani, N., Syuhada, F.A., Sihombing, J.L., Yusuf, M., Rahayu, R. (2021). Biodiesel production from rubber seed oil using natural zeolite supported metal oxide catalysts. Polish Journal of Environmental Studies 30: 6 5681-5689. DOI: 10.15244/pjoes/135615.
[121] Unni, K.N., Priji, P., Sajith, S., Faisal, P.A., Benjamin, S. (2016). Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase. Biologia 71(4): 378–387. DOI: https://doi.org/10.1515/biolog-2016-0057.
[122] Benjamin, S., Pandey, A. (1996). Optimization of liquid media for lipase production by Candida rugosa. Bioresource Technology 55(2):167–170. DOI: https://doi.org/10.1016/0960-8524(95)00194-8.
[123] Priji, P., Sajith, S., Faisal, P.A., Benjamin, S. (2016). Microbial lipases properties and applications. Journal of Microbiology, Biotechnology and Food Sciences 6(2):799–807. DOI: http://dx.doi.org/10.15414/jmbfs.2016.6.2.799-807.
[124] Jaeger, K.E., Reetz, M.T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology 16(9):396–403. DOIl https://doi.org/10.1016/s0167-7799(98)01195-0.
[125] Panichikkal, A.F., Prakasan, P., Nair, K., Unni, K., Valappil, M. (2018). Optimization of parameters for the production of biodiesel from rubber seed oil using onsite lipase by response surface methodology. 3 Biotech 8(11): 459–. DOI:10.1007/s13205-018-1477-7.
[126] Kim, J.K., Yim, E.S., Jeon, C.H., Jung, C.S., Han, B.H. (2012). Cold performance of various biodiesel fuel blends at low temperature. International Journal of Automotive Technology. 13: 293-300. DOI:10.1007/s12239-012-0027-2.
[127] Masudi, A., Muraza, O., Jusoh, N.W.C., Ubaidillah, U. (2022). Improvements in the stability of biodiesel fuels: recent progress and challenges. Environmental Science and Pollution Research 30: 14104–14125. DOI: https://doi.org/10.1007/s11356-022-25048-4.
[128] Bokhari A., Yusup S., Faridi J.A., Kamil R.N.M. (20149. Blending study of palm oil methyl esters with rubber seed oil methyl esters to improve biodiesel blending properties. Chemical Engineering Transactions 37: 571-576. DOI: 10.3303/CET1437096.
[129] Onoji, S.E., Iyuke, S.E., Igbafe, A.I., Daramola, M.O. (2017). Transesterification of rubber seed oil to biodiesel over a calcined waste rubber seed shell catalyst: Modeling and optimization of process variables. Energy Fuels 31: 6109−6119. DOI: 10.1021/acs.energyfuels.7b00331.
[130] Jose, M.D., Raj, E.R., Prasad, D.B., Kennedy, R.Z., Ibrahim, M.A.A. (2011). Multi-variant approach to optimize process parameters for biodiesel extraction from rubber seed oil. Applied Energy 88(6): 2056–63. DOI: https://doi.org/10.1016/j.apenergy.2010.12.024.
[131] Hazrat, M.A., Rasul, M.G., Mofijur, M., Khan, M.M.K., Djavanroodi, F., Azad, A.K., Bhuiya, M.M.K., Silitonga, A.S. (2020). A mini review on the cold flow properties of biodiesel and its blends. Frontiers in Energy Research 8:5 98651. DOI: 10.3389/fenrg.2020.598651.
[132] Leng, l., Li, W., Li, H., Jiang, S., zhou, W. (2020). Cold flow properties of biodiesel and the improvement methods: A review. Energy & Fuels Energy Fuels 34 (9) 10364–10383. DOI: 10.1021/acs.energyfuels.0c01912.
[133] Moser, B.R. (2009). Biodiesel production, properties, and feedstocks. In Vitro Cellular and Developmental Biology 45: 229–266. DOI: https://doi.org/10.1007/s11627-009-9204-z.
[134] Ajith, B.S., Math, M.C., Manjunath Patel, G.C., Parappagoudar, M.B. (2021). Engine performance and exhaust emissions of Garcinia gummi-gutta based biodiesel–diesel and ethanol blends. SN Applied Sciences 3:538. DOI: https://doi.org/10.1007/s42452-021-04537-0.
[135] Dewi Harreh, A.A., Saleh, A.N.R., Reddy, S., Hamdan (2018). An experimental investigation of karanja biodiesel production in sarawak. Malaysia Journal of Engineering 2018: 4174205, 8 pages, 2018. DOI: https://doi.org/10.1155/2018/4174205.
[136] Anjana, P.A., Niju, S., Meera Sheriffa Begum, K.M., Anantharaman, N., Anand, R., Babu, D. (2016). Studies on biodiesel production from Pongamia oil using heterogeneous catalyst and its effect on diesel engine performance and emission characteristics. Biofuels 7(4): 377-387, DOI: 10.1080/17597269.2015.1138039.
[137] Wu, G., Ge, J.C., Choi, N.J. (2020). A Comprehensive review of the application characteristics of biodiesel blends in diesel engines. Applied Science 10: 8015. https://doi.org/10.3390/app10228015.
[138] Sajid, Z., da Silva, M.A.B., Danial, S.N. (2021). Historical analysis of the role of governance systems in the sustainable development of biofuels in Brazil and the United States of America (USA). Sustainability 13: 6881. DOI: https://doi.org/10.3390/su13126881.
[139] Prabu, S.S., Asokan, M.A., Roy, R., Francis, S., Sreelekh, M.K. (2017). Performance, combustion and emission characteristics of diesel engine fueled with waste cooking oil bio-diesel/diesel blends with additives. 122: 638-648. DOI: https://doi.org/10.1016/j.energy.2017.01.119.
[140] Mahesh, S.E., Ramanathan, A., Begum, K.M. Meera, S., Narayanan, A. (2015). Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst. Energy Conversion and Management 91: 442–450. DOI: 10.1016/j.enconman.2014.12.031.
[141] Niju, S., Niyas, M., Begum, S., Meera, K.M., Anantharaman, N. (2015). KF-impregnated clam shells for biodiesel production and its effect on a diesel engine performance and emission characteristics. Environmental Progress & Sustainable Energy 34(4): 1166–1173. DOI: 10.1002/ep.12070.
[142] Adam, I.K., Abdul A.A.R., Heikal, M.R., Yusup, S., Firmansyah, Ahmad, A.S., Abidin, Z.E.Z. (2018). Performance and Emission Analysis of Rubber Seed, Palm, and Their Combined Blend in a Multi-Cylinder Diesel Engine. Energies 11: 1522. DOI: https://doi.org/10.3390/en11061522.
[143] Sharma, Y.C., Singh, B. (2010). An ideal feedstock, kusum (Schleichera triguga) for preparation of biodiesel: Optimization of parameters. 89(7): 1470-1474. DOI: https://doi.org/10.1016/j.fuel.2009.10.013.
[144] Onoji, S. E., Iyuke, S. E., Igbafe, A. I., & Daramola, M. O. (2020). Spectroscopic and chemical analysis of a Nigerian hybrid Hevea Brasiliensis (Rubber) seed oil for product quality assessment in technical applications. African Journal of Biotechnology 19(9): 636-643. DOI: http://dx.doi.org/10.5897/AJB2020.17220.
[145] Patil, V.V., Patil, R.S. (2017). Effects of partial addition of n-butanol in rubber seed oil methyl ester powered diesel engine. The Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 0(0): 1–11. DOI: 10.1177/095765091770869.
[146] Sai Bharadwaj, A.V.S.L., Subramaniapillai, N., Mohamed, M.S.B.K., Narayanan, A. (2021). Effect of rubber seed oil biodiesel on engine performance and emission analysis. Fuel 296: 120708. DOI: https://doi.org/10.1016/j.fuel.2021.120708.
[147] Balaji, G.; Cheralathan, M. (2014). Study of antioxidant effect on oxidation stability and emissions in a methyl ester of neem oil fueled DI diesel engine. Journal of the Energy Institute 87(3): 188−195. DOI: https://doi.org/10.1016/j.joei.2014.03.018.
[148] Kivevele, T. T., Kristóf, L., Bereczky, Á., Mbarawa, M.M. (2011). Engine performance, exhaust emissions and combustion characteristics of a CI engine fuelled with croton megalocarpus methyl ester with antioxidant. Fuel 90(8): 2782−2789. DOI: https://doi.org/10.1016/j.fuel.2011.03.048.
[149] Adam, I.K., Aziz, A. (2017). Rashid, A., Heikal, M. R., Yusup, S. (2017). Performance and Emission Analysis of Rubber Seed Methyl Ester and Antioxidant in a Multicylinder Diesel Engine. Energy & Fuels, 31(4): 4424–4435. DOI: 10.1021/acs.energyfuels.6b02994.
[150] Ramadhas, A.S., Muraleedharan, C., Jayaraj, S. (2005). Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil. Renewable Energy 30: 1789–1800. DOI: https://doi.org/10.1016/j.renene.2005.01.009.
[151] Adam, I.K., Rashid, Aziz, A.R.A., Yusup. S. (2014). Performance and emission characteristics of an idi diesel engine fuelled biodiesel (rubber seed oil and palm oil mix) diesel blend. MATEC Web of Conferences 13: 02033. DOI: 10.1051/ matecconf/201413 02033.
[152] Khalil, I., Aziz1, A.R.A., Yusup, S., Heikal, M., El-Adawy, M. (2016). Response surface methodology for the optimization of the production of rubber seed/palm oil biodiesel, IDI diesel engine performance, and emissions. Biomass Conversion and Biorefinery 7: 37–49. DOI: 10.1007/s13399-016-0221-y.

Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.