Comparative Thermogravimetric and Differential Thermal Analysis of Bio-synthesized MgO-Nanoparticles using Chromolaena odorata, Hevea brasiliensis, and Elaeis guineensis Leaf Extracts
DOI:
https://doi.org/10.71148/tjoc/v1i1.1Keywords:
Leaf Extracts, Rubber, Oil-palm, Green-synthesis, AwolowoAbstract
Magnesium oxide (MgO) nanoparticles are highly versatile, finding applications in catalysis, antibacterial treatments, and refractory materials. This study explores the eco-friendly biosynthesis of MgO nanoparticles using leaf extracts from Hevea brasiliensis (Rubber tree), Chromolaena odorata (Awolowo plant), and Elaeis guineensis (Oil Palm), capitalizing on their phytochemical richness.
Thermogravimetric Analysis (TGA) revealed distinct thermal degradation patterns. H. brasiliensis-mediated nanoparticles exhibited multi-step weight loss, with a residual content of 24.36%, while E. guineensis-based nanoparticles showed a two-phase degradation with a residue of 25.5%. C. odorata-derived nanoparticles demonstrated the highest thermal stability, with a single extended phase and 28.9% residue. Differential Thermal Analysis (DTA) highlighted energy release variations, with C. odorata-mediated nanoparticles displaying the most thermally stable exothermic peaks. These results emphasize the influence of plant extracts on the thermal properties of MgO nanoparticles and highlight biosynthesis as a sustainable method for producing thermally tailored nanoparticles for specialized applications.
Downloads
References
McNamara, K., & Tofail, S. (2017). Nanoparticles in biomedical applications. Advances in Physics: X, 2(1), 54–88. https://doi.org/10.1080/23746149.2016.1254570
Gao, X., Du, C., Zhuang, Z., & Chen, W. (2016). Carbon quantum dot-based nanoprobes for metal ion detection. Journal of Materials Chemistry C, 4(31), 6927–6945. https://doi.org/10.1039/C6TC02055K
Farani, R., Farsadrooh, M., Zare, I., Gholami, A., & Akhavan, O. (2023). Green synthesis of magnesium oxide nanoparticles and nanocomposites for photocatalytic antimicrobial, antibiofilm and antifungal applications. Catalysts, 13(4). https://doi.org/10.3390/catal13040642
Klębowski, B., Depciuch, J., Parlińska-Wojtan, M., & Baran, J. (2018). Applications of noble metal-based nanoparticles in medicine. International Journal of Molecular Sciences, 19(12). https://doi.org/10.3390/ijms19124031
Essien, E., Atasie, V., Oyebanji, T., & Nwude, D. (2020). Biomimetic synthesis of magnesium oxide nanoparticles using Chromolaena odorata (L.) leaf extract. Chemical Papers, 74(7), 2101–2109. https://doi.org/10.1007/s11696-020-01056-x
Kongsawadworakul, P., Viboonjun, U., Romruensukharom, P., Chantuma, P., Ruderman, S., & Chrestin, H. (2009). The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: Evidence for involvement of cyanogenic glucosides in rubber yield. Phytochemistry, 70(6), 730–739. https://doi.org/10.1016/j.phytochem.2009.03.020
Das, B., Moumita, S., Ghosh, S., Khan, I., Indira, D., Jayabalan, R., Tripathy, S., Mishra, A., & Balasubramanian, P. (2018). Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. Materials Science & Engineering: C, Materials for Biological Applications, 91, 436–444. https://doi.org/10.1016/j.msec.2018.05.059
Essien, E., Atasie, V., Nwude, D., Adekolurejo, E., & Owoeye, F. (2022). Characterisation of ZnO nanoparticles prepared using aqueous leaf extracts of Chromolaena odorata (L.) and Manihot esculenta (Crantz). South African Journal of Science. https://doi.org/10.17159/sajs.2022/11225
Buniyamin, I., Asli, N., Eswar, K., Kadir, S., Saiman, A., Idorus, M., Mahmood, M., & Khusaimi, Z. (2024). Biosynthesis of Tin(IV) oxide nanoparticles (SnO₂ NPs) via Chromolaena odorata leaves: The influence of heat on the extraction procedure. Journal of Science and Mathematics Letters, 12(2). https://doi.org/10.37134/jsml.vol12.2.11.2024
Tow, W., Goh, A., Sundralingam, U., Palanisamy, U., & Sivasothy, Y. (2021). Flavonoid composition and pharmacological properties of Elaeis guineensis Jacq. leaf extracts: A systematic review. Pharmaceuticals, 14(10). https://doi.org/10.3390/ph14100961
Salem, S., & Fouda, A. (2020). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370. https://doi.org/10.1007/s12011-020-02138-3
Abdullaeva, Z. (2017). Characterization of nanoparticles after biological synthesis. In Nanotechnology and Biosensors (pp. 177–195). https://doi.org/10.1007/978-3-319-54075-7_8
Khramtsov, P., Kalashnikova, T., Bochkova, M., Kropaneva, M., Timganova, V., Zamorina, S., & Rayev, M. (2020). Measuring the concentration of protein nanoparticles synthesized by desolvation method: Comparison of Bradford assay, BCA assay, hydrolysis/UV spectroscopy, and gravimetric analysis. International Journal of Pharmaceutics. https://doi.org/10.26434/chemrxiv.13285712.v1
Sharma, N., Vishwakarma, J., Rai, S., Alomar, T., AlMasoud, N., & Bhattarai, A. (2022). Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega, 7(31), 27004–27020. https://doi.org/10.1021/acsomega.2c01400
Mullis, A., Jacobson, S., & Narasimhan, B. (2020). High-throughput synthesis and screening of rapidly-degrading polyanhydride nanoparticles. ACS Combinatorial Science. https://doi.org/10.1021/acscombsci.9b00162
Hurley, K., Ring, H., Kang, H., Klein, N., & Haynes, C. (2015). Characterization of magnetic nanoparticles in biological matrices. Analytical Chemistry, 87(23), 11611–11619. https://doi.org/10.1021/acs.analchem.5b02229
Pedrosa, T., Estupiñán-López, C., & De Araujo, R. (2020). Temperature evaluation of colloidal nanoparticles by the thermal lens technique. Optics Express, 28(21), 31457–31467. https://doi.org/10.1364/OE.405172
Pielichowska, K., & Nowicka, K. (2019). Analysis of nanomaterials and nanocomposites by thermoanalytical methods. Thermochimica Acta. https://doi.org/10.1016/J.TCA.2019.03.014
Bharucha, S., Dave, M., Chaki, S., & Limbani, T. (2024). Thermal investigation of NbSe₂ nanoparticles synthesized through a temperature-dependent sonochemical method. RSC Advances, 14(50), 33459–33470. https://doi.org/10.1039/d4ra05108d
Kottala, R., Chigilipalli, B., Mukuloth, S., Shanmugam, R., Kantumuchu, V., Ainapurapu, S., & Cheepu, M. (2023). Thermal degradation studies and machine learning modelling of nano-enhanced sugar alcohol-based phase change materials for medium temperature applications. Energies, 16(5), 2187. https://doi.org/10.3390/en16052187
Rami, J., Patel, C., Patel, C., & Patel, M. (2021). Thermogravimetric analysis (TGA) of some synthesized metal oxide nanoparticles. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2020.12.554
Ikhuoria, E. U., Uwidia, I. E., Otabor, G. O., & Ifijen, I. H. (2023). Comparative analysis of magnesium oxide nanoparticles biosynthesized from rubber seed shell and rubber leaf extracts. In Biomedical Materials & Devices. https://doi.org/10.1007/s44174-023-00139-z
Essien, E., Atasie, V., Oyebanji, T., & Nwude, D. (2020). Biomimetic synthesis of magnesium oxide nanoparticles using Chromolaena odorata (L.) leaf extract. Chemical Papers, 74(7), 2101–2109. https://doi.org/10.1007/s11696-020-01056-x
Blasio, C. (2019). Thermogravimetric analysis (TGA). In Fundamentals of Biofuels Engineering and Technology (pp. 177–195). https://doi.org/10.1007/978-3-030-11599-9_7
Venkatachalam, A., Jesuraj, J. P., & Sivaperuman, K. (2021). Moringa oleifera leaf extract-mediated green synthesis of nanostructured alkaline earth oxide (MgO) and its physicochemical properties. Journal of Chemistry, 2021, Article ID 4301504, 22 pages. https://doi.org/10.1155/2021/4301504
Mrig, S., Jennings, M., Bhide, M., Bakewell, C., & Knapp, C. (2022). Deposition of metallic silver from versatile amidinate precursors for use in functional materials. Journal of Chemical Research, 46. https://doi.org/10.1177/17475198221075301.
Bharucha, S., Dave, M., Chaki, S., & Limbani, T. (2024). Thermal investigation of NbSe₂ nanoparticles synthesized through a temperature-dependent sonochemical method. RSC Advances, 14(50), 33459–33470. https://doi.org/10.1039/d4ra05108d
Essien, E., Atasie, V., Oyebanji, T., & Nwude, D. (2020). Biomimetic synthesis of magnesium oxide nanoparticles using Chromolaena odorata (L.) leaf extract. Chemical Papers, 74(7), 2101–2109. https://doi.org/10.1007/s11696-020-01056-x
Proniewicz, E., Vijayan, A., Surma, O., Szkudlarek, A., & Molenda, M. (2024). Plant-assisted green synthesis of MgO nanoparticles as a sustainable material for bone regeneration: Spectroscopic properties. International Journal of Molecular Sciences, 25(8), Article 84242. https://doi.org/10.3390/ijms25084242
Proniewicz, E., Vijayan, A., Surma, O., Szkudlarek, A., & Molenda, M. (2024). Plant-assisted green synthesis of MgO nanoparticles as a sustainable material for bone regeneration: Spectroscopic properties. International Journal of Molecular Sciences, 25(8), Article 84242. https://doi.org/10.3390/ijms25084242
Mohapatra, P., Behera, S., Sahoo, S., Mishra, A., Dalpati, A., Shubhadarshinee, L., Jali, B., Mohapatra, P., & Barick, A. (2024). Explore the effect of magnesium oxide nanoparticles decorated graphene oxide hybrid nanofillers reinforced polyaniline ternary nanocomposites on optical, thermal, and dielectric properties. Advances in Natural Sciences: Nanoscience and Nanotechnology. https://doi.org/10.1088/2043-6262/ad7c1e
Xiang, S., Lidong, F., Bian, X., Li, G., & Chen, X. (2020). Evaluation of PLA content in PLA/PBAT blends using TGA. Polymer Testing, 81, 106211. https://doi.org/10.1016/j.polymertesting.2019.106211
Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R., & Natarajan, S. (2019). Anticancer, antimicrobial, and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology B: Biology, 190, 86–97. https://doi.org/10.1016/j.jphotobiol.2018.11.014
Oladipo, A., Adeleye, O., Oladipo, A., & Aleshinloye, A. (2017). Bio-derived MgO nanopowders for BOD and COD reduction from tannery wastewater. Journal of Water Process Engineering, 16, 142–148. https://doi.org/10.1016/J.JWPE.2017.01.003
Matsukevich, I., Lipai, Y., & Romanovski, V. (2020). Cu/MgO and Ni/MgO composite nanoparticles for fast, high-efficie ncy adsorption of aqueous lead(II) and chromium(III) ions. Journal of Materials Science, 56(7), 5031–5040. https://doi.org/10.1007/s10853-020-05593-4
Nassar, M., Mohamed, T., Ahmed, I., & Samir, I. (2017). MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An efficient nano-adsorbent for the removal of some anionic textile dyes. Journal of Molecular Liquids, 225, 730–740. https://doi.org/10.1016/J.MOLLIQ.2016.10.135
Demirci, S., Yildirim, B., Tünçay, M., Kaya, N., & Güllüoğlu, A. (2021). Synthesis, characterization, thermal, and antibacterial activity studies on MgO powders. Journal of Sol-Gel Science and Technology, 99(3), 576–588. https://doi.org/10.1007/s10971-021-05609-8
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.