Comparative Thermogravimetric and Differential Thermal Analysis of Bio-synthesized MgO-Nanoparticles using Chromolaena odorata, Hevea brasiliensis, and Elaeis guineensis Leaf Extracts

Authors

  • Godfrey Osatohanmwen Otabor Department of Chemistry, Faculty of Physical Sciences, Ambrose Alli University, Ekpoma, Edo State, Nigeria Author
  • Esther Uwidia Ikhuoria Department of Chemistry, Faculty of Physical Sciences, University of Benin, P.M.B.1154, Benin City, Edo State, Nigeria Author
  • Joshua Osaretin Onaifo Department of Chemistry, Faculty of Physical Sciences, Ambrose Alli University, Ekpoma, Edo State, Nigeria Author
  • Ikhazuagbe Hilary Ifijen Department of Research Outreach, Rubber Research Institute of Nigeria, Iyanomo, P.M.B, 1049, Benin City, Edo State, Nigeria Author
  • Aiyevbekpen Clinton Ehigie Department of Chemistry, Faculty of Physical Sciences, University of Benin, P.M.B.1154, Benin City, Edo State, Nigeria Author
  • Aireguamen I. Aigbodion Department of Chemistry, Faculty of Physical Sciences, University of Benin, P.M.B.1154, Benin City, Edo State, Nigeria Author

DOI:

https://doi.org/10.71148/tjoc/v1i1.1

Keywords:

Leaf Extracts, Rubber, Oil-palm, Green-synthesis, Awolowo

Abstract

Magnesium oxide (MgO) nanoparticles are highly versatile, finding applications in catalysis, antibacterial treatments, and refractory materials. This study explores the eco-friendly biosynthesis of MgO nanoparticles using leaf extracts from Hevea brasiliensis (Rubber tree), Chromolaena odorata (Awolowo plant), and Elaeis guineensis (Oil Palm), capitalizing on their phytochemical richness.
Thermogravimetric Analysis (TGA) revealed distinct thermal degradation patterns. H. brasiliensis-mediated nanoparticles exhibited multi-step weight loss, with a residual content of 24.36%, while E. guineensis-based nanoparticles showed a two-phase degradation with a residue of 25.5%. C. odorata-derived nanoparticles demonstrated the highest thermal stability, with a single extended phase and 28.9% residue. Differential Thermal Analysis (DTA) highlighted energy release variations, with C. odorata-mediated nanoparticles displaying the most thermally stable exothermic peaks. These results emphasize the influence of plant extracts on the thermal properties of MgO nanoparticles and highlight biosynthesis as a sustainable method for producing thermally tailored nanoparticles for specialized applications.

Downloads

Download data is not yet available.

References

McNamara, K., & Tofail, S. (2017). Nanoparticles in biomedical applications. Advances in Physics: X, 2(1), 54–88. https://doi.org/10.1080/23746149.2016.1254570

Gao, X., Du, C., Zhuang, Z., & Chen, W. (2016). Carbon quantum dot-based nanoprobes for metal ion detection. Journal of Materials Chemistry C, 4(31), 6927–6945. https://doi.org/10.1039/C6TC02055K

Farani, R., Farsadrooh, M., Zare, I., Gholami, A., & Akhavan, O. (2023). Green synthesis of magnesium oxide nanoparticles and nanocomposites for photocatalytic antimicrobial, antibiofilm and antifungal applications. Catalysts, 13(4). https://doi.org/10.3390/catal13040642

Klębowski, B., Depciuch, J., Parlińska-Wojtan, M., & Baran, J. (2018). Applications of noble metal-based nanoparticles in medicine. International Journal of Molecular Sciences, 19(12). https://doi.org/10.3390/ijms19124031

Essien, E., Atasie, V., Oyebanji, T., & Nwude, D. (2020). Biomimetic synthesis of magnesium oxide nanoparticles using Chromolaena odorata (L.) leaf extract. Chemical Papers, 74(7), 2101–2109. https://doi.org/10.1007/s11696-020-01056-x

Kongsawadworakul, P., Viboonjun, U., Romruensukharom, P., Chantuma, P., Ruderman, S., & Chrestin, H. (2009). The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: Evidence for involvement of cyanogenic glucosides in rubber yield. Phytochemistry, 70(6), 730–739. https://doi.org/10.1016/j.phytochem.2009.03.020

Das, B., Moumita, S., Ghosh, S., Khan, I., Indira, D., Jayabalan, R., Tripathy, S., Mishra, A., & Balasubramanian, P. (2018). Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. Materials Science & Engineering: C, Materials for Biological Applications, 91, 436–444. https://doi.org/10.1016/j.msec.2018.05.059

Essien, E., Atasie, V., Nwude, D., Adekolurejo, E., & Owoeye, F. (2022). Characterisation of ZnO nanoparticles prepared using aqueous leaf extracts of Chromolaena odorata (L.) and Manihot esculenta (Crantz). South African Journal of Science. https://doi.org/10.17159/sajs.2022/11225

Buniyamin, I., Asli, N., Eswar, K., Kadir, S., Saiman, A., Idorus, M., Mahmood, M., & Khusaimi, Z. (2024). Biosynthesis of Tin(IV) oxide nanoparticles (SnO₂ NPs) via Chromolaena odorata leaves: The influence of heat on the extraction procedure. Journal of Science and Mathematics Letters, 12(2). https://doi.org/10.37134/jsml.vol12.2.11.2024

Tow, W., Goh, A., Sundralingam, U., Palanisamy, U., & Sivasothy, Y. (2021). Flavonoid composition and pharmacological properties of Elaeis guineensis Jacq. leaf extracts: A systematic review. Pharmaceuticals, 14(10). https://doi.org/10.3390/ph14100961

Salem, S., & Fouda, A. (2020). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370. https://doi.org/10.1007/s12011-020-02138-3

Abdullaeva, Z. (2017). Characterization of nanoparticles after biological synthesis. In Nanotechnology and Biosensors (pp. 177–195). https://doi.org/10.1007/978-3-319-54075-7_8

Khramtsov, P., Kalashnikova, T., Bochkova, M., Kropaneva, M., Timganova, V., Zamorina, S., & Rayev, M. (2020). Measuring the concentration of protein nanoparticles synthesized by desolvation method: Comparison of Bradford assay, BCA assay, hydrolysis/UV spectroscopy, and gravimetric analysis. International Journal of Pharmaceutics. https://doi.org/10.26434/chemrxiv.13285712.v1

Sharma, N., Vishwakarma, J., Rai, S., Alomar, T., AlMasoud, N., & Bhattarai, A. (2022). Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega, 7(31), 27004–27020. https://doi.org/10.1021/acsomega.2c01400

Mullis, A., Jacobson, S., & Narasimhan, B. (2020). High-throughput synthesis and screening of rapidly-degrading polyanhydride nanoparticles. ACS Combinatorial Science. https://doi.org/10.1021/acscombsci.9b00162

Hurley, K., Ring, H., Kang, H., Klein, N., & Haynes, C. (2015). Characterization of magnetic nanoparticles in biological matrices. Analytical Chemistry, 87(23), 11611–11619. https://doi.org/10.1021/acs.analchem.5b02229

Pedrosa, T., Estupiñán-López, C., & De Araujo, R. (2020). Temperature evaluation of colloidal nanoparticles by the thermal lens technique. Optics Express, 28(21), 31457–31467. https://doi.org/10.1364/OE.405172

Pielichowska, K., & Nowicka, K. (2019). Analysis of nanomaterials and nanocomposites by thermoanalytical methods. Thermochimica Acta. https://doi.org/10.1016/J.TCA.2019.03.014

Bharucha, S., Dave, M., Chaki, S., & Limbani, T. (2024). Thermal investigation of NbSe₂ nanoparticles synthesized through a temperature-dependent sonochemical method. RSC Advances, 14(50), 33459–33470. https://doi.org/10.1039/d4ra05108d

Kottala, R., Chigilipalli, B., Mukuloth, S., Shanmugam, R., Kantumuchu, V., Ainapurapu, S., & Cheepu, M. (2023). Thermal degradation studies and machine learning modelling of nano-enhanced sugar alcohol-based phase change materials for medium temperature applications. Energies, 16(5), 2187. https://doi.org/10.3390/en16052187

Rami, J., Patel, C., Patel, C., & Patel, M. (2021). Thermogravimetric analysis (TGA) of some synthesized metal oxide nanoparticles. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2020.12.554

Ikhuoria, E. U., Uwidia, I. E., Otabor, G. O., & Ifijen, I. H. (2023). Comparative analysis of magnesium oxide nanoparticles biosynthesized from rubber seed shell and rubber leaf extracts. In Biomedical Materials & Devices. https://doi.org/10.1007/s44174-023-00139-z

Essien, E., Atasie, V., Oyebanji, T., & Nwude, D. (2020). Biomimetic synthesis of magnesium oxide nanoparticles using Chromolaena odorata (L.) leaf extract. Chemical Papers, 74(7), 2101–2109. https://doi.org/10.1007/s11696-020-01056-x

Blasio, C. (2019). Thermogravimetric analysis (TGA). In Fundamentals of Biofuels Engineering and Technology (pp. 177–195). https://doi.org/10.1007/978-3-030-11599-9_7

Venkatachalam, A., Jesuraj, J. P., & Sivaperuman, K. (2021). Moringa oleifera leaf extract-mediated green synthesis of nanostructured alkaline earth oxide (MgO) and its physicochemical properties. Journal of Chemistry, 2021, Article ID 4301504, 22 pages. https://doi.org/10.1155/2021/4301504

Mrig, S., Jennings, M., Bhide, M., Bakewell, C., & Knapp, C. (2022). Deposition of metallic silver from versatile amidinate precursors for use in functional materials. Journal of Chemical Research, 46. https://doi.org/10.1177/17475198221075301.

Bharucha, S., Dave, M., Chaki, S., & Limbani, T. (2024). Thermal investigation of NbSe₂ nanoparticles synthesized through a temperature-dependent sonochemical method. RSC Advances, 14(50), 33459–33470. https://doi.org/10.1039/d4ra05108d

Essien, E., Atasie, V., Oyebanji, T., & Nwude, D. (2020). Biomimetic synthesis of magnesium oxide nanoparticles using Chromolaena odorata (L.) leaf extract. Chemical Papers, 74(7), 2101–2109. https://doi.org/10.1007/s11696-020-01056-x

Proniewicz, E., Vijayan, A., Surma, O., Szkudlarek, A., & Molenda, M. (2024). Plant-assisted green synthesis of MgO nanoparticles as a sustainable material for bone regeneration: Spectroscopic properties. International Journal of Molecular Sciences, 25(8), Article 84242. https://doi.org/10.3390/ijms25084242

Proniewicz, E., Vijayan, A., Surma, O., Szkudlarek, A., & Molenda, M. (2024). Plant-assisted green synthesis of MgO nanoparticles as a sustainable material for bone regeneration: Spectroscopic properties. International Journal of Molecular Sciences, 25(8), Article 84242. https://doi.org/10.3390/ijms25084242

Mohapatra, P., Behera, S., Sahoo, S., Mishra, A., Dalpati, A., Shubhadarshinee, L., Jali, B., Mohapatra, P., & Barick, A. (2024). Explore the effect of magnesium oxide nanoparticles decorated graphene oxide hybrid nanofillers reinforced polyaniline ternary nanocomposites on optical, thermal, and dielectric properties. Advances in Natural Sciences: Nanoscience and Nanotechnology. https://doi.org/10.1088/2043-6262/ad7c1e

Xiang, S., Lidong, F., Bian, X., Li, G., & Chen, X. (2020). Evaluation of PLA content in PLA/PBAT blends using TGA. Polymer Testing, 81, 106211. https://doi.org/10.1016/j.polymertesting.2019.106211

Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R., & Natarajan, S. (2019). Anticancer, antimicrobial, and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology B: Biology, 190, 86–97. https://doi.org/10.1016/j.jphotobiol.2018.11.014

Oladipo, A., Adeleye, O., Oladipo, A., & Aleshinloye, A. (2017). Bio-derived MgO nanopowders for BOD and COD reduction from tannery wastewater. Journal of Water Process Engineering, 16, 142–148. https://doi.org/10.1016/J.JWPE.2017.01.003

Matsukevich, I., Lipai, Y., & Romanovski, V. (2020). Cu/MgO and Ni/MgO composite nanoparticles for fast, high-efficie ncy adsorption of aqueous lead(II) and chromium(III) ions. Journal of Materials Science, 56(7), 5031–5040. https://doi.org/10.1007/s10853-020-05593-4

Nassar, M., Mohamed, T., Ahmed, I., & Samir, I. (2017). MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An efficient nano-adsorbent for the removal of some anionic textile dyes. Journal of Molecular Liquids, 225, 730–740. https://doi.org/10.1016/J.MOLLIQ.2016.10.135

Demirci, S., Yildirim, B., Tünçay, M., Kaya, N., & Güllüoğlu, A. (2021). Synthesis, characterization, thermal, and antibacterial activity studies on MgO powders. Journal of Sol-Gel Science and Technology, 99(3), 576–588. https://doi.org/10.1007/s10971-021-05609-8

Downloads

Published

2025-01-03

Issue

Section

Articles
Abtract Views | PDF Download | EPUB Download: 46 / 10 / 0

How to Cite

Otabor, G. O., Ikhuoria, E. U., Onaifo, J. O., Ifijen, I. H., Ehigie, A. C., & Aigbodion, A. I. (2025). Comparative Thermogravimetric and Differential Thermal Analysis of Bio-synthesized MgO-Nanoparticles using Chromolaena odorata, Hevea brasiliensis, and Elaeis guineensis Leaf Extracts. Tropical Journal of Chemistry, 1(1), 1-7. https://doi.org/10.71148/tjoc/v1i1.1