Polyurethane Foam: Production Processes and Advanced Material Characterization

Authors

  • Joshua Osaretin Onaifo Department of Chemistry, Faculty of Physical Science, Ambrose Alli University, Ekpoma, Edo State, Nigeria Author
  • Godfrey Osatohamwan Otabor Department of Chemistry, Faculty of Physical Science, Ambrose Alli University, Ekpoma, Edo State Author
  • Gregory Esosa Onaiwu Department of Physical Sciences (Chemistry Option), Faculty of Science, Benson Idahosa University, Benin City Author
  • Philip idemudia Edogun Department of Biological Sciences, Wellpring University, Benin City, Edo State, Author
  • Ikhazuagbe Hilary Ifijen Department of Research Outreach, Rubber Research Institute of Nigeria, Iyanomo, P.M.B, 1049, Benin City, Edo State, Nigeria Author

DOI:

https://doi.org/10.71148/tjoc/v1i1.5

Keywords:

Polyols, surfactants, foaming process, medium density foam, thermal insulation

Abstract

Polyurethane foam was synthesized using polyether polyol and water-based blowing agents, with the inclusion of a flame retardant and silicone surfactant to enhance its performance and durability. The foam's mechanical and thermal properties were systematically characterized, focusing on density, indentation force deflection (IFD), tensile strength, elongation at break, compression set, resilience, and fatigue resistance. Testing was conducted following ASTM standards to ensure reliability and comparability.

The foam exhibited a density of 71.40 ± 2.50 kg/m³, an IFD of 6.90 ± 1.25 N at 25% deflection, tensile strength of 0.22 ± 0.03 MPa, elongation at break of 69.00 ± 5.00%, compression set of 11.30 ± 1.50%, and resilience of 65.00 ± 5.50%. Dynamic and static fatigue tests confirmed minimal degradation under cyclic and sustained loading, demonstrating its robustness. While its tensile strength and elongation at break were slightly lower than standard polyurethane foams, its other properties, including thermal insulation and durability, aligned well with industry requirements.

This study highlights the foam's potential for applications in bedding, automotive, and insulation materials due to its balance of mechanical performance and long-term durability. Future research should optimise mechanical properties and explore sustainable formulation components to enhance its environmental profile while maintaining its commercial viability.

Downloads

Download data is not yet available.

References

[1] Krusenbaum, A., Grätz, S., Tigineh, G. T., Borchardt, L., & Kim, J. G. (2022). The mechanochemical synthesis of polymers. Chemical Society reviews, 51(7), 28732905. https://doi.org/10.1039/d1cs01093j

[2] Carriço, C. S., Fraga, T., Carvalho, V. E., Pasa, V. M. D. (2017). Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols. Molecules. 2017 ; 22(7):1091. https://doi.org/10.3390/molecules22071091

[3] Kaikade, D. S. & Sabnis, A. S. (2023). Polyurethane foams from vegetable oil-based polyols: a review. Polym. Bull. 80, 22392261. https://doi.org/10.1007/s00289-022-04155-9

[4] Amran, U. A., Salleh, K. M., Zakaria, S., Roslan, R., Chia, C. H., Jaafar, S. N. S., Sajab, M. S., & Mostapha, M. (2021). Production of Rigid Polyurethane Foams Using Polyol from Liquefied Oil Palm Biomass: Variation of Isocyanate Indexes. Polymers, 13(18), 3072. https://doi.org/10.3390/polym13183072

[5] Olivito, F., Jagdale, P. & Oza G. (2023). Synthesis and Biodegradation Test of a New Polyether Polyurethane Foam Produced from PEG 400, L-Lysine Ethyl Ester Diisocyanate (L-LDI) and Bishydroxymethyl Furan (BHMF). Toxics. 11(8):698. https://doi.org/10.3390/toxics11080698.

[6] Beverte, I., Cabulis, U., Andersons, J., Kirpluks, M., Skruls, V. & Cabulis, P. (2023). Characteristics of Components and Density of Rigid Nanoclay-Filled Medium-Density Polyurethane Foams Produced in a Sealed Mould. Polymers. 15(15):3228. https://doi.org/10.3390/polym15153228

[7] Junaedi, H., Khan, T., & Sebaey, T. A. (2023). Characteristics of Carbon-Fiber-Reinforced Polymer Face Sheet and Glass-Fiber-Reinforced Rigid Polyurethane Foam Sandwich Structures under Flexural and Compression Tests. Materials (Basel, Switzerland), 16(14), 5101. https://doi.org/10.3390/ma16145101

[8] Losio, S., Cifarelli, A., Vignali, A., Tomaselli, S. & Bertini F. (2023). Flexible Polyurethane Foams from Bio-Based Polyols: Prepolymer Synthesis and Characterization. Polymers. 15(22):4423. https://doi.org/10.3390/polym15224423.

[9] Wang, Z., Wang, C., Gao, Y., Li, Z., Shang, Y &, Li, H. (2023). Porous Thermal Insulation Polyurethane Foam Materials. Polymers. 15(18):3818. https://doi.org/10.3390/polym15183818.

[10] Al-kahtani, M. S. M., Zhu, H., Ibrahim, Y. E., Haruna, S. I. & Al-qahtani, S. S. M. (2023). Study on the Mechanical Properties of Polyurethane-Cement Mortar Containing Nanosilica: RSM and Machine Learning Approach. Applied Sciences. 13(24):13348. https://doi.org/10.3390/app132413348

[11] Paciorek-Sadowska, J., Borowicz, M. & Isbrandt, M. (2023). Evaluation of the Effect of Waste from Agricultural Production on the Properties of Flexible Polyurethane Foams. Polymers. 15(17):3529. https://doi.org/10.3390/polym15173529

[12] Linul, P., Bănică, R., Grad, O. & Linul, E. (2024). Vaszilcsin N. Highly Electroconductive Metal-Polymer Hybrid Foams Based on Silver Nanowires: Manufacturing and Characterization. Polymers. 2024; 16(5):608. https://doi.org/10.3390/polym16050608

[13] Shin, S. R., Liang, J. Y., Ryu, H., Song, G. S., & Lee, D. S. (2019). Effects of Isosorbide Incorporation into Flexible Polyurethane Foams: Reversible Urethane Linkages and Antioxidant Activity. Molecules (Basel, Switzerland), 24(7), 1347. https://doi.org/10.3390/molecules24071347

[14] Sołkowski, J., Górszczyk, J., Malicki, K., & Kudła, D. (2021). The Effect of Fatigue Test on the Mechanical Properties of the Cellular Polyurethane Mats Used in Tram and Railway Tracks. Materials (Basel, Switzerland), 14(15), 4118. https://doi.org/10.3390/ma14154118

[15] Kaur, R., Singh, P., Tanwar, S., Varshney, G. & Yadav S. (2022). Assessment of Bio-Based Polyurethanes: Perspective on Applications and Biodegradation. Macromol. 2022; 2(3):284-314. https://doi.org/10.3390/macromol2030019

[16] Kairytė, A., Kremensas, A., Balčiūnas, G., Członka, S., Strąkowska, A. (2020). Closed Cell Rigid Polyurethane Foams Based on Low Functionality Polyols: Research of Dimensional Stability and Standardised Performance Properties. Materials (Basel). 13(6):1438. doi: 10.3390/ma13061438. PMID: 32245242; PMCID: PMC7143543.

[17] Gupta, N., Zeltmann, S.E., Luong, D.D., Doddamani, M. (2019). Testing of Foams. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_50.

[18] Kamińska, K., Barczewski, M., Kurańska, M., Malewska, E., Polaczek, K., & Prociak, A. (2022). The Effect of a Chemical Foaming Agent and the Isocyanate Index on the Properties of Open-Cell Polyurethane Foams. Materials, 15(17), 6087. https://doi.org/10.3390/ma15176087

[19] Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev. 2019 Apr 24;119(8):5298-5415. doi: 10.1021/acs.chemrev.8b00593. Epub 2019 Mar 27. PMID: 30916938; PMCID: PMC6589095.

[20] Hallik, J., Gustavson, H., & Kalamees, T. (2019). Air Leakage of Joints Filled with Polyurethane Foam. Buildings, 9(7), 172. https://doi.org/10.3390/buildings9070172

[21] Prete, S., Dattilo, M., Patitucci, F., Pezzi, G., Parisi, O, I. & Puoci, F. (2023). Natural and Synthetic Polymeric Biomaterials for Application in Wound Management. Journal of Functional Biomaterials. 14(9):455. https://doi.org/10.3390/jfb14090455

[22] Visco, A., Quattrocchi, A., Nocita, D., Montanini, R., & Pistone, A. (2021). Polyurethane Foams Loaded with Carbon Nanofibers for Oil Spill Recovery: Mechanical Properties under Fatigue Conditions and Selective Absorption in Oil/Water Mixtures. Nanomaterials, 11(3), 735. https://doi.org/10.3390/nano11030735.

[23] Schäfer, K., Nestler, D., Kroll, L. (2022). Quasi-Static and Fatigue Properties of Thermoset Sandwiches with 3D Continuous Fibre Reinforced Polyurethane Foam Core. Materials (Basel). 15(3):764. doi: 10.3390/ma15030764. PMID: 35160710; PMCID: PMC8836769.

[24] Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., Ullah, M. F., Bibi, H., Bafakeeh, O. T. & Khedher, N. B. (2022). Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts. 12(11):1386. https://doi.org/10.3390/catal12111386

[25] Yakushin, V., Rundans, M., Holynska, M., Sture, B., & Cabulis, U. (2023). Influence of Reactive Amine-Based Catalysts on Cryogenic Properties of Rigid Polyurethane Foams for Space and On-Ground Applications. Materials (Basel, Switzerland), 16(7), 2798. https://doi.org/10.3390/ma16072798.

[26] Tomaselli, S., Bertini, F., Cifarelli, A., Vignali, A., Ragona, L. & Losio, S. (2023). Antibacterial Properties of Polyurethane Foams Additivated with Terpenes from a Bio-Based Polyol. Molecules. 28(4):1966. https://doi.org/10.3390/molecules28041966.

[27] Bohne, D. (2023). Electrical Engineering. In: Building Services and Energy Efficient Buildings. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-41273-9_6

[28] Gama, N. V., Ferreira, A. & Barros-Timmons, A. (2018). Polyurethane Foams: Past, Present, and Future. Materials. 11(10):1841. https://doi.org/10.3390/ma11101841

[29] Mahmood, A., Akram, T., Chen, H. & Chen, S. (2022). On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers. 14(21):4698. https://doi.org/10.3390/polym14214698

Downloads

Published

2025-01-16

Issue

Section

Articles
Abtract Views | PDF Download | EPUB Download: 47 / 7 / 1

How to Cite

Onaifo, J. O., Otabor, G. O., Onaiwu, G. E., Edogun, P. idemudia, & Ifijen, I. H. (2025). Polyurethane Foam: Production Processes and Advanced Material Characterization . Tropical Journal of Chemistry, 1(1), 31 – 36. https://doi.org/10.71148/tjoc/v1i1.5